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A High Accuracy FDTD Algorithm to Solve
Microwave Propagation and Scattering

Problems on a Coarse Grid
James B. Cole

Abstract— If the spatial variation of electric permittivity and
magnetic permeability is “small” Maxwell’s equations can be
approximated by the scalar wave equation in each field com-
ponent. We introduce a new high-accuracy second order finite-
difference time-domain (FDTD) algorithm to solve the scalar
wave equation on a coarse grid with a solution error less than
10–4 that of the conventional one. The computational load at
each grid point is greater, but it is more than offset by a large
reduction in the number of grid points needed, as well as by
a reduction in the number of iterations. Also boundaries can
be more accurately characterized at the subgrid level. Although
optimum performance is achieved at a fixed frequency, the
accuracy is still much higher than that of a conventional FDTD
algorithm over “moderate” bandwidths.

I. INTRODUCTION

M ANY ELECTROMAGNETIC problems can be reduced

to the scalar wave equation in each field component
if the spatial variation of electric permittivity and magnetic

permeability is “sufficiently small.” In many practical prob-
lems magnetic permeability can be regarded as constant, with

constant electrical permittivity except at certain interfaces. For
example, for TM waves (EZ = 13v = O, 13Z # O; Hz = O,

Hz # O, fly # O) incident on some conducting structure
in vacuum, Maxwell’s equations reduce to the scalar wave
equation with respect to Ez.

We introduce a new high accuracy finite-difference time-
domain (FDTD) algorithm to solve the scalar wave equation
with sources and attenuation. We have coupled this algorithm
with (computational) real time visualizations that allow the

user to view wave propagation and scattering processes as the
computation proceeds. The algorithm is thus a useful tool for
modeling transient phenomena. In addition since the far field
approximation is not used, this algorithm is useful to compute
near field processes.

The homogeneous wave equation

(8,, - V(z) ’v’)+(z t) = o (1)

where v(x) =
dh

is the local wave speed, can be

approximated by a finite-difference (FD) equation of the
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form [1]

(T - V(z)2D)@(z, t) = O (2)

where T and D are FD approximations to dtt and V2,
respectively. Solution error arises from the deviation of ‘IT@
and D@ from &@ and V2~. It can be reduced either by

using higher order FD approximations, or by finer space-time

sampling of the wavefield. Unfortunately both strategies are
computationally expensive, and the tradeoff between acctmacy
and computational economy is quite severe, It is thus desir-
able to improve the accuracy without going to higher order
approximations, and without increasing the fineness of the
computational grid. That is the subject of this paper.

FD solutions to (1) are plagued not only by the absolute

size of the solution error but also by its anisotropy with
respect to the propagation direction due to the anisotropy of
the FD Laplacian. In this paper we introduce a new, nearly
isotropic, second-order FD Laplaciau, which when inserted
into a modified version of (2), yields a second-order FDTD

wave propagation algorithm that is almost error free on a
coarse grid at fixed wave number and frequency. Even over a
“moderate” frequency band, however, the error is still smaller
than that of a conventional FDTD algorithm. Our isotropic FD
Laplacian can also be used in other types of FD equations to

improve the accuracy.

II. A NEARLY ISOTROPIC SECOND-ORDER

FINITE-DIFFERENCE LAPLACIAN

For simplicity, let us first restrict ourselves to two dimen-

sions. On a uniform Cartesian grid, there are two possible

second-order FD approximations to the Laplacian defined by

h2D1f(x, ~) = f(z + ky) + f(z – ~,y) + f(~,Y + ~)

+ f(%, y – h) – 4f(z>y) (3a)

and

h2D2.f(z, y) = jf(fi + h,y + h) + f(z + h,y – h)

+f(z–h, y+h)+f(~–h, y–h;l]

— 2j(z, y) (3b)

where h is the grid spacing, A general second-order FD
Laplacian can thus be expressed as a linear combinatiorl of

DI and D2 in the form

D = TDl + (1 –cy)D2 (4)

where T is a real parameter.
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The spatial part of a plane wave solution to (1) is @,(z) =

e‘~”z, where k = (kz, kv) = k(cosd, sind), x = (z, Y), and

k = 27r/A, where A is the wavelength. If A is expressed in

terms of the grid spacing, wecan then set h= 1.

Throughout this paper we take h= 1, and~/h is replaced
by A measured in grid units. The important quantity in a
wave propagation and scattering problem is not the absolute
wavelength but its size relative to the grid spacing and to the
scattering features. Applying D to ~. with h = 1 we find that
D@. = 29!I,D, where

D(k, d) = ~D1(k, O) + (1 – -y)Dz(k,8) (5a)

and

ll~(k,o) = Coskz + Coskv – 2, (5b)

ll~(k,o) = Coskzcoskv – 1. (5C)

Although both D1 and D2 are anisotropic with respect to the
propagation direction, 0, we might hope to find a value of y
that makes D isotropic.

Since D1(k, O) = D2(k,0) = cosk – 1, let us try to
determine y such that D(k, @) = cos k – 1. At one arbitrary
value of Q this can be done by choosing

Dz(k, fl) – (COSk – 1)
~(k, 6) =

D2(k, @) – Dl(k, d) “
(6)

At first sight this approach does not look very promising,
because the constant parameter that we seek is a function of
both k and 0. It turns out, however, that the O-dependence of
-y is quite weak and we can eliminate it by evaluating ~ at a
fixed value of 6, /30.

Defining

DO(k, O) = -yO(k)D1(k, O) + (1 – VO(A))~2(~,~) (7)

where

~o(k) = v(k, flO). (8)

Let us examine the anisotropy of Do [see Fig. l(b)].
We find that the choice 00 = O.18203m symmetrizes
ADO (k, 0) /(cos k – 1) about zero such that its maxima and
minima have the same absolute values. This symmetrization
is, moreover, independent of k to an excellent approximation.
Comparing Fig. 1(a) and (b) we see that the anisotropy of Do
is less than 10-4 that of D1 on a coarse grid (A = S), and

~o(~, ~) =Cosk–1 (9)

is thus an excellent approximation for all 19.The linear com-

bination

Do(k) = ~o(k)Dl + (1 – yo(k))D2 (10)

thus constitutes a nearly isotropic finite difference Lapla-
cian expression for 72. While V2ei~”’ /e’L”z = –k2,
Doe’’”Z/e”eZ x 2(cosk – 1) = –k2 + 2kA/4! + L> SO Do

is still fundamentally a second order approximation to V2,

(a) (b)

Fig. 1. Anisotropy of DI and DO at k = 2m/8. All(k. d) = D(k. 0) –
(cask – 1), where D = DI or Do.

but unlike Dle’’”z/e”*T and D2e’k*r/e’’”Z, Doe’’*X/e””Z

is virtually isotropic.
Since 70 is a function of k, we would expect that this

isotropy can be valid only at the wave number, k., used to
compute -yO.It turns out, however, that while the isotropy of
Do does degrade away from ko, it is still much better than
that of D1. This point is discussed further in Appendix A.

III. A NEARLY EXACT SECOND ORDER ALGORITHM

Let us take T to be the standard second-order FD operator

given by

~2T~(t) = j’(t + T) + f(t – ~) – 2~(t) (11)

where ~ is the time step size. Setting ~ = 1, and computing
Te-WJt we find Te–’”’t = 2T(ti)e-’W*, where 7’(u) =

cos w – 1. Here w = 2T/P, where P is the wave period
measured in terms of time steps. Throughout this paper we
take T = 1, and P/T is replaced by P measured in time steps.

The nearly exact isotropy of Do allows us, at fixed wave
number and frequency, to construct a nearly exact algorithm
to solve (1) by modifying the form of (2). Since D = Do is
nearly isotropic, the deviation of T and D from dtt and V2
can be compensated for by replacing I) in (2) by an adjustable
parameter, u

(T - u2D)@(z, t) = O. (12)

Setting D = Do, and substituting a plane wave, @o(x, t) =
~I(koT–LJ~), into (12), we obtain

(T - U2DO)@o(Z, t) = 2@o(z, t)~(ti, k, 8) (13)

where S(LJ, k, 6) = T’(w) — u2Do(k, 6) is the solution error.
Using (9’). ~ can be made to vanish at fixed k and m, by
choosing u = Uo. where

Cosu —1
u; = (14)

COSk -l”

Insofar as (9) holds, the solution error vanishes at fixed
k and w. The choices (D = Do, u = Uo) in (12) thus
define the optimal finite difference approximation to (1). The
replacement of u by u is actually a generalized application of
the methodology described in [6].

We can now construct an FDTD algorithm to solve the wave
equation of the form

v(z, t+ 1) = 27JJ(z, t) - i(x. t– 1) +u(x)2D@(x,t). (15a)
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Fig. 2. Solution error anisotropy for (a) the (D = DI. u = t) and (b) the
(D = Do, u = ..) algorithms at k = 2m/8, and tilk = 2/3.

We write U(Z) to emphasize that u can vary spatially. For the
inhomogeneous wave equation with sources and attenuation
[2]

(t&V(Z)2V2)@(Z, t) = v(x)2s(z, t)-2ci(x)&@(x, t) (16)

where s (Z, t) is a source term and d is the attenuation, it can

be shown [3] that (15a) becomes

(15b)

If the refractive index of the medium depends on position,

then at fixed frequency k = k(z), and we can define DO and u;

locally as functions of position. In the case of locally variable

permittivity, s(z), and conductivity, a(z), we can replace
(1 -2a)/(l+2a), and l/(l+2cY) by (2~-0)/(2~+o), and
2/(2e + m), respectively (see for example Ref. 7). Boundaries
can also be accommodated by a local definition of D as shown
in Section VI,

Because we sample only points adjacent to ~, on a single-
instruction multiple-data (SIMD) computing architecture, in-
terprocessor communication is minimized and this algorithm
can be rapidly iterated. Using time-domain display graphics

output we have viewed the evolution of wave propagation and

scattering processes in complicated environments [3]–[5].
In Fig. 2 we compare the absolute size and anisotropy

of solution error (s) as a function of O for the choices
(D = Dl, u = u) and (D = Do, u = Uo). We see that
for the latter Iel is more than four orders of magnitude smaller
than for the former.

The primary source of solution error at a single frequency
is due to the error in the phase, rather than the amplitude, of

the computed wavefronts. When (15a) is iterated, a mode of
wave number k and frequency w will appear to propagate with
a velocity v’ such that (12) is satisfied. Denoting by Aw’ the
maximum amount by which v’ deviates from v = w/k, the
maximum distance, R, that a wave front can propagate on the
grid before the phase error accumulates to 27r/} is

R=&. (17)

For example at A = 8 and w/k = 2/3, R/J = 8.6 for (D =
Dl, u = w), whereas for (D = Do, u = Uo) R/A = 2.8x 105.

IV. STABILITY CONDITIONS AND SIMULATION SPEED

Equation (12) can expressed in the form

where, for simplicity, the spatial dependence is suppressed
and discretized time is denoted by a subscript. Postulating a

solution of the form q!+ = Wt and inserting it into (18), we
obtain w’ – 2bw+ 1 = O, where b = 1 +U2D. For (18) to have
an oscillatory solution we must have b2 < 1, This implies the
constraint U2 < – D. Following Ref. [1], the upper bound on
u’ is determined by the maximum possible value of (– D).

which yields

2
U2 <

max(-D) “
(19)

The stability condition can be expressed in the form A/}) =

v < v~ax, which can be rewritten as

A
P>— (20)

v max

where v~.. is determined from (19). Since A and P are
measured in terms of grid units and time steps, respectively,
the wave velocity, v = A/P, represents the number of grid
units that the wavefront propagates per time step. The larger
v~,,, the fewer the number of iterations needed to solve a
given problem.

For (D = Dl, u = v), max(–D) = 4 and (19) yields the
well known constraint

v~.X(D=D1, u=v)=@
2

= 0.70. (21)

For (D = Do, u = Uo), max(–11) = 470 and we find that
u; < 1/(27.). Using the facts that lim~-o ~o(k) = 2/3 and
To(k > O) < 2/3, we obtain u~ < 3/4 for all k >0. Inserting

w = kv into (14), we obtain

‘m==:arcsin($in(k’2)(22)

What value of k should we use to evaluate v~.X? An arbitrary
signal contains a mix of frequencies, so to ensure stability
we must use the minimum value of v~a~ with respect to k.
Since TJmax decreases as k increases. we use k~,X = 2n /3.
which corresponds to A = 3, the shortest wavelength that can
propagate on the grid (see Appendix B). Thus

()3V~aX(D = DO, u = Uo) = ~ arcsin ~ % 0.80 (23)

which is about 1470 larger than Vn,ax (D = D,, u = V).

The (D = Do, u = U.) algorithm thus requires fc wcr

iterations than the (D = D 1, u = v) algorithm, wihile

delivering superior accuracy. The price to be paid is that we

must calculate D2@ in addition to D 1~ at each time step, but

this is more than compensated by the high accuracy that can

be achieved with a small number of grid points.
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V. EXTENSION TO THREE DIMENSIONS

The previous developments can be extended to three di-

mensions. Here there are three different second-order FD

Laplacians and two angular degrees of freedom.

In three dimensions (3a) and (3b) become

h2Dl~(x, y, z)

= f($ + h,y,z) + f(z - h,y, z)

+f(x, y+h,:)+f(z, y–h, z)

+f(x, v,z+h)+f(~. Y,~–~)

– 6f(x, !/, ~) (24a)

h2D2~(z, g, z)

=+[f(z+ h.Y+h>z+h)+ f(z-h,v-h,z -h)

+.f($+h, y-h, z+h)+f(z-h, y+ h,z–h)

+f(z–h, v+h.z+h )+f(z+h,y–h,z– h)

+.f(z–h, y–kz+h) +f(z+h, y+h, z –h)]

– 2,f(r, y). (~4b)

The third FD Laplacian can be constructed by combining two-

dimensional Laplacians of the form (3b), for each of the three

possible coordinate pairs

We obtain k-domain expressions analogous to (5) of the form

Dl(k,@,@)= Coskk+ Coskg+ Cosk,,– 3, (25a)

Dz(k, 6, ~) = Cos k, Cos kg Cos k= – 1 (25b)

: (Cosk. Cos kv + Cos k. Cos k.

+ Cos ku Cos kz – 3) (25c)

k(sindcos~, sin Osin~, COSO), and O
and ~ are the usual spherical coordinates.

Fixing k, we now seek an isotropic linear combination of
Dl, D2, and D3, D0 = CUID1+ a2D2 + a3D3, such that

Do = alDl + a2D2 + a~ll~ x cos k – 1 for all @ and
~. First we construct Dlz = ~lzDl + (1 – ~lz)Dz and
D 13 = 712D1 + (1 – 713)D3 and minimize the variation of

Dlz = T1zDl + (1 –TIz)Dz and DM = mD1 + (1–913)Dj
with respect to 6’at ~ = O. Following previous developments,
we find 712 = To, and 713 = 270 – 1, where To is given by

(8). D12 and D13 are nearly isotropic with respect to 0, but
not q$. Setting 0 = m/4 wc suppress the q5-depcmdencc of the

combination

Do = 7/oD12 + (1 – qo)D13. (26)

Again following previous developments we find that the

anisotropy of Do = qoD12 + (1 – r/o)D13 with respect to

~ is minimized by choosing q = qo, where

lll~(k, 7r/4, 40) – (cm ~ – 1)
?lO(k) =

D13(k,7r/4,450) – D~Z(k,7r/4, &j)
(27)

where q50 R 0.l1811m. Since Do(k, d,O) = Do(k, O), the 9-
dependence of Do can be characterized by Fig. 1(b), while its

#-dependence, best characterized by Do(k) 7r/4, ~), is shown

in Fig. 4. As we can see in Figs, 1(b) and 4, the fractional
variation of Do (k, O,@) about cos k – 1 is approximately 10–6,
so (9) also holds in three dimensions,

Do can now be expressed in the form

Do = alD1 + a2D2 + a3D3 (28)

where

al = qo(l –~o) + (270 – 1)

0’2 = qo(l – ‘yO)

043 = 1– ((11 +CY2). (29)

Next let us examine stability. Extending the previous devel-
opments, to three dimensions we find

v~,x(D = Dl, u = v) = ~ x 0.57.
3

(30)

For (D = Do, u = Uo) using lim~-o al(k) = 7/15 and
lirn~-o a2(k) = 2/15, we find that nlax(-D) = 46/15,

which yields u: < 15/23. Repeating previous considerations

we obtain

IJ~aX(D = Do, u = Uo) = ~ arcsin
(E?) “073. . /

(31)
In three dimensions v~ax (D = DO, u = Uo) is thus about
28% larger than v,n.X(D = DI, u = v).

In three dimensions, using the (D = Do, u = Uo) algorithm,
we achieve the same reduction (10–4) in solution error as in
two dimensions. Now however we must calculate D2~ and
D34 in addition to D1@ at each time step, but this is more
than compensated by the high accuracy that can be achieved

with a low number of grid points and by a reduction in the
number of iterations needed.

VI. BOUNDARY CONDITIONS AT THE SUBGRID LEVEL

To apply the algorithm to solve practical problems on a
coarse grid, it becomes important to implement boundary
conditions at the subgrid level. For example for a TM wave
in a complicated metal structure we would like to be able to
implement the condition Ez = O at a metal boundaries without
using a large number of grid points to describe their locations.

The boundary conditions of greatest interest are

*(:LD) = h (32a)

n. V@(.rB) = b (32b)

where b is a constant, n is a local normal to the boundary, 1?,
and :CB c B. The basic problem is to approximate V24(z, t)
in the neighborhood of a boundary point in terms of the
boundary conditions and known field quantities inside the
boundary while eliminating unknowns outside it, when ZB
falls between the lattice points on the grid. To illustrate how
(32a) and (32b) can be implemented in this case, consider
a one-dimensional vibrating string. At ZB = n + c,, where
0< u <1, and n is an integer, (32aj becomes @(n+a, t) = b.
Assuming that waves impinge on the boundary from the region
x < n + u, we seek a FD expression for 8.7+ (n, t) in terms
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lE–6

❑
(A/~ = 8) thesolution error is less than 10-’ that of the
conventional FDTD algorithm using (D = Dl, u = v). To

&
attain the same accuracy with the (D = Dl, u = v) algorithm
one would need to operate at A/h = 1140.

This superior accuracy comes at the expense of a greater

–lE–6 computational load at each grid point, but it is more lthan

o $ % offset by the low A/h ratio that can be used, as well as by

Fig, 3. Anisotropy of Do in the azimuthal direction, where a decrease in the number of iterations needed. In addition,
A~O(k, T/4,4) = 120(k,r/4,@) – (cosk – 1) at k = 2rr/8,boundaries can be more accurately characterized. Althcmgh
Variabilitywith respect to d is maximalat @= rf-1 optimal performance can be achieved at only one frequency,

good results can still be had with multifrequency signals.

+x

Our algorithm is based on an isotropic second-order FD
Laplacian, which can be used in FD approximations to other
differential equations. The same approach used to construct it
can be applied to derive other kinds of isotropic FD operators.

(a) (b)

Fig.4. W(z~) = constant on a curved boundary (B) that passes be-
tween the gnd points. Dotted straight line segments indicate the effective
apPrOximatiOnto ~ for the cases (a) D = D ~ and, (b) D = Do.

(a) (b)

Fig.5. n ● ~@(.ZB ) = constant on a curved boundary (~) that passes

between the grid points, where n is a local normal, Dotted straight line

segments indicate the effecbve approximahon to B for the cases (a) D = D I

and, (b) D = Do.

of @(n+ a,t), ~(~,t), and ~(n – 1, t). Expanding @(n+ a,t)
and @(n – 1, t) in Taylor series about z = n, we obtain

APPENDIX A

APPLICATION TO MULTIFREQUENCY SIGNALS

Since both Do and U. are functions of I?, the (D = Do, u =

U.) solution error rises for spatial frequencies that deviate

from the value, i%o, at which Do and U. are defined. The

smaller k., the smaller the solution error away from kO.

Even on a coarse grid (A N 8), however, the maximum
anisotropy of DO(kO)e*~OZ/e’~OZ is still less than 10–2 that
of Dle’’”Z/e’’”Z, so Do(ko)e’’OZ/e””Z w 2(COSk - 1) is
still a reasonable approximation even at k # k.. The main
source of solution error at k # k. thus arises from the
difference between Do(ko)e’~OZ/e*~OZ w 2(COSk – 1) and
Do(ko)e’~OOX/ez~ ””z N 2 (COSk. — 1). To handle broadband
signals one should therefore set the (smallest) wavelength,
AL (in terms of grid units), corresponding to the highest
wavenumber, kH, such that the difference, (COSk~ – cos kH ),
is “sufficiently” small, where k~ is the lowest wavenumlber.

~..’w~,o = &~, [a’@(n - l,t)- (1+ cz)’f#(rz,t) + b].
The broader the frequency range, the larger AL must be for a
given error tolerance, and hence the finer the grid relative to

(33a) the wavelengths.“Sufficiently small” depends on the detailk of

This result can be generalized to higher dimensions. The the particular problem at hand, such as signal bandwidth, the
extension of (33a) to two dimensions using D = DI is maximum propagation distance and the tolerable phase enror.
equivalent to approximating 1? by the dashed line as shown
in Fig. 4(a), while using D = DO is equivalent to the
approximation shown in Fig. 4(b).

Returning to the string, (32b) takes the form dT@(n+a, t) =
b, and it is easy to show that

L&$b(n, t) = ++@+kL–1,~)– 4J(n,t) + b]. (33b)

This result can also be extended to higher dimensions. In
two dimensions, using D = D 1, (33b) is equivalent to
approximating B by tangents perpendicular to the coordinate

axes as shown in Fig. 5(a), while using D = Do is equivalent

to approximating B as shown in Fig. 5(b).

VII. SUMMARY

APPENDIX B

SPACE-TIMESAMPLING OF THE WAVEFIELD

Let f be a function of the form j’(x) = a sin kx + b cos kxz
on a one-dimensional grid, where k = 27r/A. For A = 1 and

2 (grid units) the sine component of the signal vanishes at
the sample points. To unambiguously determine both a and b

on a discrete interval of length A, at least four sample vaktes
are needed. We thus obtain the constraint ~ z 3. For the
(D = DI, u = v) case this constraint applies in both two
and three dimensions, for (D = Do, u = U.), however, the

calculation of Do~ involves grid points that are separated by
a distance of & , where d is the dimensionality of the grid,
thus for D = Do we must satisfy

In this paper we have derived a new FD approximation A > 3A. (Bl)
to the wave equation for use on a coarse grid to solve
wave propagation and scattering problems in complicated Rounding off to next highest integer values gives A 25, and

environments. Using just eight grid units per wavelength A ~ 6 in two, and three dimensions, respectively. We have
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used A = 8 in our calculations in order to resolve the peaks

and troughs of the wave fields.
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