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A High Accuracy FDTD Algorithm to Solve
Microwave Propagation and Scattering
Problems on a Coarse Grid

James B. Cole

Abstract—1If the spatial variation of electric permittivity and
magnetic permeability is “small” Maxwell’s equations can be
approximated by the scalar wave equation in each field com-
ponent. We introduce a new high-accuracy second order finite-
difference time-domain (FDTD) algorithm to solve the scalar
wave equation on a coarse grid with a solution error less than
10™* that of the conventional one. The computational load at
each grid point is greater, but it is more than offset by a large
reduction in the number of grid points needed, as well as by
a reduction in the number of iterations. Also boundaries can
be more accurately characterized at the subgrid level. Although
optimum performance is achieved at a fixed frequency, the
accuracy is still much higher than that of a conventional FDTD
algorithm over “moderate” bandwidths.

1. INTRODUCTION

ANY ELLECTROMAGNETIC problems can be reduced

to the scalar wave equation in each field component
if the spatial variation of electric permittivity and magnetic
permeability is “sufficiently small.” In many practical prob-
lems magnetic permeability can be regarded as constant, with
constant electrical permittivity except at certain interfaces. For
example, for TM waves (E, = E, =0, E, # 0; H, = 0,
H, # 0, H, # 0) incident on some conducting structure
in vacuum, Maxwell’s equations reduce to the scalar wave
equation with respect to F.

We introduce a new high accuracy finite-difference time-
domain (FDTD) algorithm to solve the scalar wave equation
with sources and attenuation. We have coupled this algorithm
with (computational) real time visualizations that allow the
user to view wave propagation and scattering processes as the
computation proceeds. The algorithm is thus a useful tool for
modeling transient phenomena. In addition since the far field
approximation is not used, this algorithm is useful to compute
near field processes.

The homogeneous wave equation

(8t — v(2)’V)Y(z, t) =0 (D

1
Ve@u(z)

approximated by a finite-difference (FD) equation of the

where v(z) = is the local wave speed, can be
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form [1]
(T — v(2)®D)y(x,t) = 0 )

where T and D are FD approximations to 8 and V2,
respectively. Solution error arises from the deviation of T4
and D from Ont and V2e. Tt can be reduced either by
using higher order FD approximations, or by finer space-time
sampling of the wavefield. Unfortunately both strategies are
computationally expensive, and the tradeoff between accuracy
and computational economy is quite severe. It is thus desir-
able to improve the accuracy without going to higher order
approximations, and without increasing the fineness of the
computational grid. That is the subject of this paper.

FD solutions to (1) are plagued not only by the absolute
size of the solution error but also by its anisotropy with
respect to the propagation direction due to the anisotropy of
the FD Laplacian. In this paper we introduce a new, nearly
isotropic, second-order FD Laplacian, which when inserted
into a modified version of (2), yields a second-order FDTD
wave propagation algorithm that is almost error free on a
coarse grid at fixed wave number and frequency. Even over a
“moderate” frequency band, however, the error is still smaller
than that of a conventional FDTD algorithm. Our isotropic FD
Laplacian can also be used in other types of FD equations to
improve the accuracy.

II. A NEARLY ISOTROPIC SECOND-ORDER
FINITE-DIFFERENCE LAPLACIAN

For simplicity, let us first restrict ourselves to two dimen-
sions. On a uniform Cartesian grid, there are two possible
second-order FD approximations to the Laplacian defined by

R2D1 () = Jo+ hoy) + (& = ) + [,y + )
+ oy = h) — 4f(z.y) (o)
and
WDy f(e.) = 517 + by + )+ @+ hoy = h)
+ flz —hoy+h)+ flx = h,y—h)]
- 2f(z,y) (3b)

where h is the grid spacing. A general second-order FD
Laplacian can thus be expressed as a linear combination of
D; and D, in the form

D =9D; + (1 ~-9)Dq “

where « is a real parameter.
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The spatial part of a plane wave solution to (1) is ¢ (z) =
e**, where k = (ks ky) = k(cosf,sinf), z = (z,y), and
k = 2w /A, where A is the wavelength. If A is expressed in
terms of the grid spacing, we can then set = 1.

Throughout this paper we take » = 1, and A/h is replaced
by A measured in grid units. The important quantity in a
wave propagation and scattering problem is not the absolute
wavelength but its size relative to the grid spacing and to the
scattering features. Applying D to 1, with b = 1 we find that
Dy, = 2¢,D, where

D(k,0) =Dy (k,0) + (1 —v)Da(k,8) (52)

and
Dy(k,8) = cosk, + cosk, — 2, (5b)
Dy(k,0) = coskycosky, — 1. 5¢)

Although both [y and D, are anisotropic with respect to the
propagation direction, #, we might hope to find a value of ~
that makes D isotropic.

Since Di(k,0) = D3(k,0) = cosk — 1, let us try to
determine  such that D(k,d) = cosk — 1. At one arbitrary
value of # this can be done by choosing

Dy(k,0) — (cosk — 1)

V8 0) = k6 = Dy (k,0)

(6)

At first sight this approach does not look very promising,
because the constant parameter that we seek is a function of
both & and 6. It turns out. however, that the #-dependence of
v is quite weak and we can eliminate it by evaluating ~y at a
fixed value of 6, .

Defining

Do(k,0) = vo(k)D1(k,0) + (1 — vo(k))Da(k,0)  (T)
where
Yo(k) = (k. fo). (8

Let us examine the anisotropy of Dy [see Fig. 1(b)].
We find that the choice 6y, = 0.182037 symmetrizes
ADqy(k,8)/(cosk — 1) about zero such that its maxima and
minima have the same absolute values. This symmetrization
is, moreover, independent of & to an excellent approximation.
Comparing Fig. 1(a) and (b) we see that the anisotropy of Dy
is less than 10~ that of Dy on a coarse grid (A = 8), and

Do(k,0) = cosk — 1 )

is thus an excellent approximation for all 8. The linear com-
bination

Do (k) = vo(k)D1 + (1 — 70(k))D2 (10
thus constitutes a nearly isotropic finite difference Lapla-
cian expression for V2. While VZe'*r /erher = 2,
Dgetke® [eike x5 2(cosk — 1) = —k? + 2k*/4! + L, so Dy
is still fundamentally a second order approximation to V2,
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Fig. 1. Anisotropy of Dy and Do at & = 27/8. AD(k.¢) = D(k.8) —

(cosk — 1), where D = Dy or Dg.

but unlike DleLkor/ezkn, and Dgelk't/eik.r, Doeikoz/ezkox
is virtually isotropic.

Since -y is a function of k, we would expect that this
isotropy can be valid only at the wave number, kg, used to
compute ¥p. It turns out, however, that while the isotropy of
Dy does degrade away from kg, it is still much better than
that of D;. This point is discussed further in Appendix A.

III. A NEARLY EXACT SECOND ORDER ALGORITHM

Let us take T to be the standard second-order FD operator
given by

TPTf(t) = f(t+7)+ f(t —7) - 2f(t)

where 7 is the time step size. Setting 7 = 1, and computing
Te ! we find Te ™" = 2T(w)e !, where T(w) =
cosw — 1. Here w = 27/P, where P is the wave period
measured in terms of time steps. Throughout this paper we
take 7 = 1, and P/ is replaced by P measured in time steps.

The nearly exact isotropy of Dy allows us, at fixed wave
number and frequency, to construct a nearly exact algorithm
to solve (1) by modifying the form of (2). Since D = Dy is
nearly isotropic, the deviation of T and D from 8y and V?
can be compensated for by replacing » in (2) by an adjustable
parameter, u

(1D

(T — w*D)ey(z,t) = 0. (12)

Setting D = Dy, and substituting a plane wave, ¢y(z,t) =
er(ker—wt) intg (12), we obtain

(T — w?Dy)po(x, 1) = 200(x, t)e(w, k. 0) (13)

where e(w, k,0) = T(w) — u2Dy(k,0) is the solution error.
Using (9). ¢ can be made to vanish at fixed £ and w, by
choosing 4 = wug. where

cosw — 1

cosk —1° (14

ul =
Insofar as (9) holds, the solution error vanishes at fixed
k and w. The choices (D = Dg,u = up) in (12) thus
define the optimal finite difference approximation to (1). The
replacement of v by w is actually a generalized application of
the methodology described in [6].
We can now construct an FDTD algorithm to solve the wave
equation of the form

Yz, t+ 1) = 20(2,t) — p(z.t — 1) + u(x)*Dy(x, t). (15a)
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—4E~3 —2E~7
0 0 % 0 g %
(a) (b)
Fig. 2. Solution error anisotropy for (a) the (D = Dj.u = v) and (b) the
(D = Do, u = up) algorithms at k = 27/8, and w/k = 2/3.

We write u(z) to emphasize that « can vary spatially. For the
inhomogeneous wave equation with sources and attenuation

[2]
(Or—v(x)* V)W (2, 1) = v(z)?s(2, 1) —20(2)dh(z,t) (16)

where s(z,t) is a source term and « is the attenuation, it can
be shown [3] that (15a) becomes

1—2a(=z)

Pz, t+1) = P(x,t) + (1+2a(x)

)OMLO—¢®J—1D

1
+(TIZE5)M@%D¢@¢%+JLQ)
(15b)

If the refractive index of the medium depends on position,
then at fixed frequency k& = k(z), and we can define Do and u3
locally as functions of position. In the case of locally variable
permittivity, £(z), and conductivity, ¢(x), we can replace
(1-2a)/(14+2«), and 1/(14 2a) by (26 —0)/(2¢ + o), and
2/(2¢ + o), respectively (see for example Ref. 7). Boundaries
can also be accommodated by a local definition of D as shown
in Section VI

Because we sample only points adjacent to . on a single-
instruction multiple-data (SIMD) computing architecture, in-
terprocessor communication is minimized and this algorithm
can be rapidly iterated. Using time-domain display graphics
output we have viewed the evolution of wave propagation and
scattering processes in complicated environments [3]-[5].

In Fig. 2 we compare the absolute size and anisotropy
of solution error (¢) as a function of § for the choices
(D = Dyj,u = v) and (D = Dg,u = ug). We sec that
for the latter || is more than four orders of magnitude smaller
than for the former.

The primary source of solution error at a single frequency
is due to the error in the phase, rather than the amplitude, of
the computed wavefronts. When (15a) is iterated, a mode of
wave number & and frequency w will appear to propagate with
a velocity v’ such that (12) is satisfied. Denoting by Av’ the
maximum amount by which v/ deviates from v = w/k, the
maximum distance, R, that a wave front can propagate on the
grid before the phase error accumulates to 2w/ is

7
Ay’

For example at A = 8 and w/k = 2/3, R/A = 8.6 for (D =
D1, u = v), whereas for (D = Dy, u = ug) B/A = 2.8 x 10°.

R =

arn
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IV. STABILITY CONDITIONS AND SIMULATION SPEED

Equation (12) can expressed in the form

PYra1 — 200y + ey = 2u? Dy (18)
where, for simplicity, the spatial dependence is suppressed
and discretized time is denoted by a subscript. Postulating a
solution of the form 1; = w* and inserting it into (18), we
obtain w? —2bw+1 = 0, where b = 1-+u2D. For (18) to have
an oscillatory solution we must have b* < 1. This implies the
constraint 2 < —D. Following Ref. [1], the upper bound on
u? is determined by the maximum possible value of (- D).
which yields

2 2

< (D) (19)

The stability condition can be expressed in the form A/ P =
v < Umax, Which can be rewritten as

A

Umax

P>

20y

where vy, is determined from (19). Since A and P are
measured in terms of grid units and time steps, respectively,
the wave velocity, v = A/P, represents the number of grid
units that the wavefront propagates per time step. The larger
Umax, the fewer the number of iterations needed to solve a
given problem.

For (D = Dy, u = v),max(—D) = 4 and (19) yields the
well known constraint

V2

Vmax(D = D1, u=v) = - N 0.70. 2n

For (D = Dy, u = up), max(—D) = 4, and we find that
ud < 1/(2v). Using the facts that limg_,ovo(k) = 2/3 and
vo(k > 0) < 2/3, we obtain u2 < 3/4 for all k > 0. Inserting
w = kv into (14), we obtain

Vmax = %arcsin <§ sin(k/Z)). (22)

What value of k should we use to evaluate vy,,? An arbitrary
signal contains a mix of frequencies, so to ensure stability
we must use the minimum value of vyax With respect to k.
Since vpmax decreases as k increases, we use bpmax = 27 /3.
which corresponds to A = 3, the shortest wavelength that can
propagate on the grid (see Appendix B). Thus

Vmax(D = Dy, u = ug) = —;arcsin <%> ~ (.80 (23)
which is about 14% larger than vy« (D = Dy, u = v).

The (D = Dg,u = wup) algorithm thus requires fewer
iterations than the (D = Dj,u = wv) algorithm, while
delivering superior accuracy. The price to be paid is that we
must calculate Do) in addition to D1 at each time step, but
this is more than compensated by the high accuracy that can
be achieved with a small number of grid points.



2056

V. EXTENSION TO THREE DIMENSIONS

The previous developments can be extended to three di-
mensions. Here there are three different second-order FD
Laplacians and two angular degrees of freedom.

In three dimensions (3a) and (3b) become

WDy f(z.y,2)
=fl@+hy.2)+ flx — h,y,2)
+ flzy+h,2)+ flx,y — h,2)
+ flz.y,z+h)+ f(z.y,z—h)
~6f(x,y.2)
WDy f (2. y, 2)

1 ‘
= flethythzth)+ flo—hy—hz—h

+fle+hy—hz+h)+ flr —hy+hz—h)

+ fle - h,y+hz+h)+ flx+hy—hz—h)

+ fle—hy~hz+h)+ f@+hy+hz—h)
~2f(z.y). (24b)
The third FD Laplacian can be constructed by combining two-

dimensional Laplacians of the form (3b), for each of the three
possible coordinate pairs

(24a)

D; = %(DS]” +D{ + DY), (24c)
We obtain k-domain expressions analogous to (3) of the form
D1(k.8,¢) = cosky + cosky + cosk. — 3, (25a)
Dy (k,0,$) = cosk, coskycosk, ~ 1 (25b)
and
D3(k,8,¢) = —;*(COS k. cosk, + cosk, cosk,
+cosk,cosk, —3) (25¢)

where (k.. ky, k.) = k(sinfcos ¢,sinfsin @, cosf), and
and ¢ are the usual spherical coordinates.

Fixing &, we now seek an isotropic linear combination of
D, D5, and D3, Dy = a1D1 + 2D + a3Ds, such that
Dy = an Dy + a9Dy 4+ a3Ds =~ cosk — 1 for all 4 and
¢. First we construct Dy = 712D1 + (1 — 712)D3 and
D3 = v12D1 + (1 — 713)D3 and minimize the variation of
D1g = y12D1+(1=712) D3 and D13 = v13D1 4 (1 —y13) D3
with respect to 6 at ¢ = 0. Following previous developments,
we find Y12 = 79, and Y13 = 29 — 1, where Yo is given by
(8). D2 and D3 are nearly isotropic with respect to 4, but
not ¢. Setting # = w/4 we suppress the ¢-dependence of the
combination

Dy = noDi2 + (1 — n9)Dys. (26)

Again following previous developments we find that the
anisotropy of Dy = n9D19 4+ (1 — 19) D13 with respect to
¢ is minimized by choosing n = 7q, where

no(k) = Di3(k,7/4,¢o) — (cosk — 1)
o= Dys(k, 7 /4, ¢0) — Dia(k,7/4, $o)

where ¢ & 0.11811x. Since Do(k,8,0) = Do(k,8), the 6-
dependence of D can be characterized by Fig. 1(b), while its

27)
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¢-dependence, best characterized by Do(k, # /4, ¢). is shown
in Fig. 4. As we can see in Figs. 1(b) and 4, the fractional
variation of Do (k, 6, ¢) about cos k— 1 is approximately 10~°,
so (9) also holds in three dimensions.

Dy can now be expressed in the form

Do =a1D; + a9D2 + a3Ds (28)
where

a1 = no(1 — 7o) + (270 — 1)

ag = no(1 — )

as =1— (a1 + a). (29)

Next let us examine stability. Extending the previous devel-
opments, to three dimensions we find
3
max(D = D1, u =) = % ~ 0.57. (30)
For (D = Dg,u = wug) using lim;_oa(k) = 7/15 and
limy 9 cwa{k) = 2/15, we find that max(—D) = 46/15,
which yields u2 < 15/23. Repeating previous considerations
we obtain

3 15v3
Umax(D = Do, v = ug) = p arcsin <1/ ﬁ§> ~ 0.73.

(31)
In three dimensions vmax(D = Do, u = ug) is thus about
28% larger than vmax(D = Dy, u = v).

In three dimensions, using the (D = Do, u = uo) algorithm,
we achieve the same reduction (10~%) in solution error as in
two dimensions. Now however we must calculate D51 and
D3+ in addition to D44 at each time step, but this is more
than compensated by the high accuracy that can be achieved
with a low number of grid points and by a reduction in the
number of iterations needed.

VI. BOUNDARY CONDITIONS AT THE SUBGRID LEVEL

To apply the algorithm to solve practical problems on a
coarse grid, it becomes important to implement boundary
conditions at the subgrid level. For example for a TM wave
in a complicated metal structure we would like to be able to
implement the condition £, = 0 at a metal boundaries without
using a large number of grid points to describe their locations.

The boundary conditions of greatest interest are

Ylzp) =b
ne V'[/r(.rg) =5

(32a)
(32b)

where b is a constant, n is a local normal to the boundary, B,
and wp € B. The basic problem is to approximate V?1(z, )
in the neighborhood of a boundary point in terms of the
boundary conditions and known field quantities inside the
boundary while eliminating unknowns outside it, when zp
falls between the lattice points on the grid. To illustrate how
(32a) and (32b) can be implemented in this case, consider
a one-dimensional vibrating string. At g = n + a, where
0 < a < 1, and n is an integer, (32a) becomes ¥)(n+a,t) = b.
Assuming that waves impinge on the boundary from the region
z < n+ a, we seek a FD expression for 9,,1)(n,t) in terms
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1E76
Ay /\
cosk‘l/ \
~1E6
0 ¢ A
Fig. 3. Anisotropy of Dg in the azimuthal direction, where
ADg(k,7/4,¢) = Dolk,w/4,0) — (cosk — 1)at k = 2x/8.

Variability with respect to ¢ is maximal at 6 = 7/1 .

(a) (b)

Fig. 4. y(xp) = constant on a curved boundary (B) that passes be-
tween the gnid points. Dotted straight line segments imdicate the effective
approximation to B for the cases (a) D = Dj and, (b) D = Dg.

lB - ,_{\E

(a) (b)

Fig. 5. ne Vy¢(rg) = constant on a curved boundary (B) that passes
between the grid points, where n is a local normal. Dotted straight line
segments indicate the effective approximation to B for the cases (a) D = Dy
and. (b) D = Do.

of Y(n+a,t), ¥(n,t), and 1(n — 1,t). Expanding 4 (n + a,t)
and ¥(n — 1,t) in Taylor series about x = n, we obtain

Breth(n, t) & [ap(n —1,t) — (1 + a)(n,t) + b].

a(l+a)
(33a)
This result can be generalized to higher dimensions. The
extension of (33a) to two dimensions using D = D, is

equivalent to approximating B by the dashed line as shown
in Fig. 4(a), while using D = Dy is equivalent to the
approximation shown in Fig. 4(b).

Returning to the string, (32b) takes the form d,¢(n+a,t) =
b, and it is easy to show that

dwm¢(n7 t) ~ W(" -

1) = 9(n,t) +b].  (33b)

a+1/2
This result can also be extended to higher dimensions. In
two dimensions, using D = Dj, (33b) is equivalent to
approximating B by tangents perpendicular to the coordinate
axes as shown in Fig. 5(a), while using D = Dy is equivalent
to approximating B as shown in Fig. 5(b).

VII. SUMMARY

In this paper we have derived a new FD approximation
to the wave equation for use on a coarse grid to solve
wave propagation and scattering problems in complicated
environments. Using just eight grid units per wavelength
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(A/h = 8) the solution error is less than 10~ that of the
conventional FDTD algorithm using (D = D, u = v). To
attain the same accuracy with the (D = Dy, u = v) algorithm
one would need to operate at A/h = 1140.

This superior accuracy comes at the expense of a greater
computational load at each grid point, but it is more than
offset by the low A\/h ratio that can be used, as well as by
a decrease in the number of iterations needed. In addition,
boundaries can be more accurately characterized. Although
optimal performance can be achieved at only one frequency,
good results can still be had with multifrequency signals.

Our algorithm is based on an isotropic second-order FD
Laplacian, which can be used in FD approximations to other
differential equations. The same approach used to construct it
can be applied to derive other kinds of isotropic FD operators.

APPENDIX A
APPLICATION TO MULTIFREQUENCY SIGNALS

Since both Dy and wg are functions of k, the (D = Dy, u =
ug) solution error rises for spatial frequencies that deviate
from the value, ko, at which Dg and wg are defined. The
smaller ko, the smaller the solution error away from k.
Even on a coarse grid (A ~ 8), however, the maximum
anisotropy of Dg(ko)e'** /e**** is still less than 10~2 that
of Dyet**2 [ek*2 g0 Dy(kq)e* /e *® = 2(cosk — 1) is
still a reasonable approximation even at k # kg. The main
source of solution error at k& # ko thus arises from the
difference between Dyg(ko)e**® /e'**® =~ 2(cosk — 1) and
Do (ko)e*o®* Jetko®2 =~ 2(cos kg — 1). To handle broadband
signals one should therefore set the (smallest) wavelength,
Ar (in terms of grid units), corresponding to the highest
wavenumber, kg, such that the difference, (coskr —cosky),
is “sufficiently” small, where %y is the lowest wavenumber.
The broader the frequency range, the larger Ar must be for a
given error tolerance, and hence the finer the grid relative to
the wavelengths. “Sufficiently small” depends on the details of
the particular problem at hand, such as signal bandwidth, the
maximum propagation distance and the tolerable phase error.

APPENDIX B
SPACE-TIME SAMPLING OF THE WAVEFIELD

Let f be a function of the form f(z) = asinkz + bcoskz
on a one-dimensional grid, where k¥ = 27/A. For A = 1 and
2 (grid units) the sine component of the signal vanishes at
the sample points. To unambiguously determine both a and b
on a discrete interval of length A, at least four sample values
are needed. We thus obtain the constraint A > 3. For the
(D = Djy,u = v) case this constraint applies in both two
and three dimensions, for (D = Dy, u = ug), however, the
calculation of Dge involves grid points that are separated by
a distance of \/d , where d is the dimensionality of the grid,
thus for D = D¢ we must satisfy

A > 3Vd. (B1)

Rounding off to next highest integer values gives A > 5, and
A > 6 in two, and three dimensions, respectively. We have
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used A = 8 in our calculations in order to resolve the peaks
and troughs of the wavefields.
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